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Abstract. The reduction of the three-body clas-

sical problem is considered in the framework of

the ideas of separation of the internal and exter-

nal motions of a body-system. Based on the fact

that for Hamiltonian system there exists equiva-

lence between phase trajectories and geodesics tra-

jectories on the Riemannian manifold (the energy

hypersurface of a body-system), the classical three-

body problem is formulated in the framework of

six geodesic equations. It is shown that in the

case when the total interaction potential of a body-

system depends on the relative distances between

particles, the three from six geodesics equations de-

scribing rotations of formed by three bodies triangle

are solved exactly. Using this fact the problem of

three-body is possible to describe by three nonlinear

ODEs of a canonical form that in the phase space is

equivalent to autonomous system of the sixth-order.

It is shown that the reduced problem describes the

dynamics of the three-body system on the scattering

plane with consideration of the total angular mo-

mentum of the rotating body-triangle. The system

of algebraic equations for finding of homographic so-

lutions of restricted three-body problem is obtained.

Introduction

The general three-body classical problem con-

cerns the question of understanding the motions of

three arbitrary point masses traveling in space ac-

cording to Newton’s laws of mechanics. Many works

on analytical mechanics, celestial mechanics, stellar

and molecular dynamics (see [1, 2, 3, 4, 5, 6, 7, 8])

are devoted to the study of this problem. For so-

lution of the general problem different approaches

based on series expansions methods have been pro-

posed; however, due to the poor convergence of

these expansions they are often used and are useful

only for solving of particular problems where the

system of three-bodies is in a stable bound state

[1, 9]. Moreover, the three-body problem is a typ-

ical example of a dynamic system where on the

large scales of the phase space we observe all fea-

tures of a complex motion including the bifurcation

and chaos. That makes the numerical simulation

method a basic way of research of the mentioned
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Figure 1: The Cartesian coordinates system where

the set of vectors r1, r2 and r3 denotes coordinates

of the 1st, 2nd and 3rd particles, respectively. The

© is the center-of-mass of pair (12) which in the

Cartesian system is expressed by R0. The Jacobi

coordinates system described by the radius-vectors

R and r , in addition to θ, denote scattering angle.

problem.

The main aim of this work is finding new oppor-

tunities to separation of the internal and external

motions in the general classical three-body problem.

The last will have a key importance for the reducing

of dimensionality of dynamical problem that will al-

low to develop an effective algorithm for numerical

simulation.

The classical three-body system in

the laboratory frame

The classical Hamiltonian of the three-body sys-

tem after Jacobi [9] and mass-scale [10] transforma-

tions can be written in the form (see also [11]):

H(r;p) =
p

2

2µ0

+ V(r), (1)

where r = r ⊕R ∈ R6 and p ∈ R6 correspondingly

the position vector and the momentum of the effec-

tive mass (imaginary point) µ0 = [m1m2m3/(m1 +

m2 + m3)]
1/2, (m1,m2 and m3 masses of bodies).

Note that r designates the distance between 2 and 3
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bodies, while R is the distance between 1th particle

and the center of mass of the pair (2,3).

Without going into details note that the con-

sidered problem has 12 integrals of motions using

which the initial 18th order system to the 8th order

system is reduced [12].

Geodesic equations in

conformal-Euclidean space

As it is easy to see, the classical system of three

bodies at motion in the 3D Euclidean space per-

manently forms a triangle, and Newton’s equations

describes the dynamical system on the space of such

triangles [13]. This means that we can formally con-

sider the motion of a body-system consisting of two

parts. The first is the rotational motion of the body-

triangle in the 3D Euclidian space and the second is

the internal motion of bodies on the plane defined

by the triangle. Mathematically, the configuration

manifold of solid body R6 can be represented as a

direct product of two subspaces [14]:

R6 ∼= R3
× S3,

where R3 is the manifold which is defined as an or-

thonormal space of relative distances between bod-

ies while S3 denotes the space of the rotation group

SO(3). However in the considered problem, con-

nections between of bodies are not holonomic and

respectively we must change the representation for

the configuration manifold M.

Let us consider the region of changing of coor-

dinates an imaginary point on the plane formed by

the system of three-body (further will be named the

internal space Mt):

x1
= ||r || ∈

[

0,∞
)

, x2
= ||R|| ∈

[

0,∞
)

, x3
=

||r + R|| =
√

(x1)2 − 2x1x2 cos θ + (x2)2 ∈ L, (2)

where θ is the angle between the vectors r and R

which in the Jacobi coordinates system is the scat-

tering angle, in addition L = [x1
−x2, x1 +x2]. The

set of internal coordinates {x̄} = (x1, x2, x3) ∈ Mt.

The rotation of a plane defined by body-triangle

will be described by the set of three external coor-

dinates (x4, x5, x6) ∈ S3
t , where S3

t is a space of the

rotation group SO(3) in a neighborhood of interior

points Mi{(x
1, x2, x3)i} ∈ Mt. The subset of all

interior points M̆ ⊂ M is represented as:

M̆
∼= Mt × S3

t .

The set M \ M̆ has zero measure however in some

cases it can be important for dynamics of the three-

body system.

So, we can define a local coordinate system in

which will be carried further studies:

x1, x6 = {x} ∈ M̆. (3)

Taking into account the well-known work of

Krylov [15], we will study the motion of a three-

body system on the hypersurface of potential en-

ergy of the body-system. In particularly a metric of

the hypersurface can be defined in the form:

gµν({x}) = g({x})δµν , gµν
= g−1

({x})δµν ,

g({x}) =
[

E − U({x})
]

U−1

0 > 0, (4)

where E and U({x}) ≡ V (r) the total energy and

potential of the body-system correspondingly, in ad-

dition U0 = max ||U({x})||. In the case when the

total interactions potential depend from relative dis-

tances between particles for the metric tensor we

have the equality gµν({x}) ≡ gµν({x̄}).

The geodesic equations on the Riemannian man-

ifold can be derived using the variational principle

of Maupertuis [14, 16]:

ẍα
+ Γ

α
βγ ẋ β ẋ γ

= 0, α, β, γ = 1, 6, (5)

where ẋα = dxα/ds and ẍα = d 2xα/ds2; in ad-

dition s is a scalar parameter of motion (e.g. the

proper time), Γα
βγ designates Christoffel symbol:

Γ
α
βγ({x}) =

1

2
gαµ

(

∂γgµβ + ∂βgγµ − ∂µgβγ

)

, (6)

where ∂α ≡ ∂xα .

Now using equations (5)-(6) and definition for the

metric tensor (4) we can derive the following system

of second order ordinary differential equations:

ẍ1
= a1

{

(ẋ1
)
2
−

6
∑

µ6=1, µ=2

(ẋµ
)
2

}

+2ẋ1

{

a2ẋ
2
+a3ẋ

3

}

,

ẍ2
= a2

{

(ẋ 2
)
2
−

6
∑

µ=1, µ6=2

(ẋµ
)
2

}

+2ẋ2

{

a3ẋ
3
+a1ẋ

1

}

,

ẍ3
= a3

{

(ẋ3
)
2
−

6
∑

µ=1, µ6=3

(ẋµ
)
2

}

+2ẋ3

{

a1ẋ
1
+a2ẋ

2

}

,

ẍ4
= ẋ4

{

a1ẋ
1

+ a2ẋ
2

+ a3ẋ
3

}

,

ẍ5
= ẋ5

{

a1ẋ
1

+ a2ẋ
2

+ a3ẋ
3

}

,

ẍ6
= ẋ6

{

a1ẋ
1

+ a2ẋ
2

+ a3ẋ
3

}

, (7)

where following designations are made:

g({x̄}) = g11({x̄}) = ... = g66({x̄}),

ai({x̄}) = −(1/2)∂xi ln g({x̄}), i = 1, 2, 3.

In the system (7), the last three equations are inte-

grated exact:

ẋµ
= Jµ−3/g({x̄}), Jµ−3 = constµ−3, (8)

128



where µ = 4, 5, 6.

Let us note that J1, J2 and J3 are integrals of mo-

tion. Their can be interpreted as projections of the

total angular momentum J =
√

J2
1 + J2

2 + J2
3 =

const of the three-body system on corresponding

axes, which are clearly defined by the initial condi-

tions.

Finally, substituting (8) into equations (7), we

obtain the following system of a non-linear second-

order ordinary differential equations:

ẍ1
= a1

{

(ẋ1
)
2
− (ẋ2

)
2
− (ẋ3

)
2
− (J/g)

2
}

+2ẋ1
{

a2ẋ
2

+ a3ẋ
3
}

,

ẍ2
= a2

{

(ẋ 2
)
2
− (ẋ3

)
2
− (ẋ)

2
− (J/g)

2
}

+2ẋ 2
{

a3ẋ
3

+ a1ẋ
1
}

,

ẍ3
= a3

{

(ẋ3
)
2
− (ẋ1

)
2
− (ẋ 2

)
2
− (J/g)

2
}

+2ẋ3
{

a1ẋ
1

+ a2ẋ
2
}

. (9)

Thus the system of equations (9) describes the

dynamics of an imaginary point with the effective

mass µ0 on the Riemannian manifold (the hyper-

surface of the potential energy of the system of

three-body); M =
[

{x̄} ≡ (x1, x2, x3) ∈ Mt; gij =
(

E−U({x̄})
)

U−1

0 δij > 0
]

, with taking into account

rotation of the body-triangle. The system of equa-

tions (9) can be represented as a system of six ODEs

of first order:

u̇ = 2a1

{

u2
− v2

− w2
− (J/g)

2
}

+ 2u
{

a2v + a3w
}

,

v̇ = 2a2

{

v2
− u2

− w2
− (J/g)

2
}

+ 2v
{

a3w + a1u
}

,

ẇ = 2a3

{

w2
− v2

− u2
− (J/g)

2
}

+ 2w
{

a1u + a2v
}

,

u = ẋ1, v = ẋ2, w = ẋ3, (10)

where the first three equations form the system of

Riccati equations. Recall that summands type of

(J/g)2 in equations (10) describe rotational motion

of the effective mass that evidently related to Cori-

olis forces.

Finally using expression of the metric (4) we can

write Hamiltonian of imaginary point with the ef-

fective mass µ0, which executes moving in 6D con-

figuration space:

H
(

{x̄}; { ˙̄x}
)

=
1

2µ0

gαβ
({x̄})pαpβ =

δαβpαpβ

2µ0g({x̄})
,

where { ˙̄x} = (u, v, w).

Taking into account solutions (8) the Hamiltonian

of reduced system can be represented in the form:

H
(

{x̄}; { ˙̄x}
)

=
µ0

2
g({x̄})

{

u2
+v2

+w2
+

( J

g(x̄)

)2}

.

(11)

Note that, substituting Hamiltonian (11) into the

Hamilton-Jacobi equations and by making simple

calculations, we can get geodetic equations (9).

The restricted problem and

homographic solutions

An important class of solutions for the restricted

three-body problem can be studied without solving

of equations system (10). Using equations (10) we

can derive conditions at which formation of stable

configurations for a three-body system are possible.

The first condition which must be satisfied for sta-

ble configuration of a body-system is obviously the

condition of absence of external forces:

∇H
(

{x̄}; { ˙̄x}
)

= 0, (12)

where ∇ = gij∂j = g−1
∑3

j=1
∂j .

Substituting (11) into (12) with account of the def-

inition of coefficients ai we can find the following

system of algebraic equations:

a1({x̄}) = 0, a2({x̄}) = 0, a3({x̄}) = 0. (13)

Solving the system (13) we can find sets of station-

ary points {x̄}i where i = 0, 1... . It is obvious that

from these sets of points stable configurations will

form only those for which the following conditions

are satisfied:

∂2
11H({x̄}0i; { ˙̄x}0i) > 0,

det
(

∂2
ijH({x̄}0i; { ˙̄x}0i)

)

> 0,

det
(

∂2
klH({x̄}0i; { ˙̄x}0i)

)

> 0, (14)

where i, j = 1, 2 and k, l = 1, 2, 3; in addi-

tion, in the (14) designation ∂2
kl = ∂2/∂xk∂xl is

made. However, system of equations (13) together

with conditions (14) defines stable configurations

({x̄}0i; { ˙̄x}0i = 0) of motionless bodies. Note that

these stable stationary configurations are interest-

ing in that they can serve as bases for construct-

ing homographic solutions (the solutions which con-

serve the configuration of bodies during the time).

In other words, near the stationary points {x̄}i ≈

{x̄}0i configuration of bodies should be moving

freely. The latter means that we can ignore the

first derivatives in equations (10) and write them in

the form of algebraic equations:

u2
− v2

− w2
− λ 0 + 2

(

λ12v + λ13w
)

u = 0,

v2
− w2

− u2
− λ 0 + 2

(

λ23w + λ21u
)

v = 0,

w2
− u2

− v2
− λ 0 + 2

(

λ31u + λ32v
)

w = 0, (15)

where λ 0 =
(

J/g({x̄}0i)
)2

= consti ≥ 0, in addi-

tion the following designations are made:

λ ij = lim
{x̄}i→{x̄}0i

aj/ai, λ ij = λ−1

ji , i, j = 1, 2, 3,

Solving the system of equations (15), we can find in

the general case eight sets of solutions for velocities
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{ ˙̄x}k
0i, where k = 1, ..., 8. The existence of sets of

real solutions will mean that for the body-system

with account of rotations on Euler angles there are

homographic solutions. In the case when there is

at least one set of solutions for the system of equa-

tions (15), it is important to seek solutions near

stationary points with consideration of conditions

(14). By these computations, we can find a region

in the phase space where the coupled three-body

system (123) depending on specific conditions can

be in the stable or quasistable equilibrium state.

Conclusion

As has shown Poincare the three-body problem

generally is a non-integrable system whereupon the

system of bodies in the phase space often demon-

strates a chaotic behaviors. It means that the small

differences in the initial conditions produce very

great changes in the motion of the system on a

relatively smallish intervals of time that practically

makes impossible the prediction of evolution of bod-

ies system in the phase space. The last in turn

means that any small error at calculations of the

three-body problem in a short time can develop into

an enormous mistake. Based on the foregoing, the

reduction of the dimensionality of the general classi-

cal three-body problem is a mathematical problem

of great importance. It should be noted that for the

solution to this problem a lot of effort was made, but

the maximal possible reduction of dimensionality of

the three-body and N -body problem achieved only

when the motion of bodies constrained on a plane

[17].

We have studied the system of three-body on the

configuration space (Riemannian manifold) M̆
∼=

Mt × S3
t . The problem of motion is formulated as

a problem of geodesic flows on the M̆. It is shown

that from six nonlinear equations exactly are solved

three. This give us possibility to reduce the initial

18th order system and to lead it to the autonomous

system of 6th order. The obtained system consists

from the three Riccati equations which are symmet-

ric relative to variables. This enables us to derive

a set of algebraic equations by which it is possible

find all homographic solutions of three-body system.

This enables us to derive the system of algebraic

equations by which can be found all homographic

solutions of the three-body system.

In end we would like to note, that though the

represented approach is not a rigorous proof of the

reduction of the general three-body problem (it all

depends on how important is the set M \ M̆ for an

exact description of dynamic of three-body), nev-

ertheless it is an interesting model for theoretical

studies of motion in the non-integrable system. In

addition, on the basis of this approach it is possi-

ble to develop high-performance algorithm and pro-

gram package for simulation different complex ap-

plied problems.
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